Opamps
Opamp attributes
- Inverting input v1, non-inverting input v2: $$v_2-v_1=0$$ $$v_o=A(v_2-v_1)$$
- Ideal characteristics:
- A -> infty
- Input currents -> 0
- Rin -> intfy
- Rout -> 0
- Slewrate -> infty
- Bandwidth -> intfy
Inverting amplifier
$$A=\frac{v_o}{v_{in}}=\frac{-R_2}{R_1}$$
Non-inverting amplifier
$$A=\frac{v_o}{v_{in}}=1+\frac{R_2}{R_1}$$
Integrator
$$v_o=\frac{-1}{RC}\int v_{in}dt$$
Differentiator
- Note: In this form, the circuit is not stabe, as high frequency noise can send it into oscillation $$v_o=-RC\frac{dv_{in}}{dt}$$
Inverting summer
$$v_o=-[v_1(\frac{R_f}{R_1})+v_2(\frac{R_f}{R_2})…]$$
Buffer
$$v_o=v_{in}$$
Low pass filter
$$A(jω)=\frac{-Z_2}{Z_1}=\frac{-R_2/R_1}{1+jωCR_2}$$
- Limits tests $$@ω=0: A(jω)=\frac{-R_2}{R_1},@ω=\infty: A(jω)=0$$
- Cutoff $$ω_c=\frac{1}{CR_2}, f_c=\frac{1}{2\pi CR_2}$$
High pass filter
$$A(jω)=\frac{-Z_2}{Z_1}=\frac{jωCR_2}{1+jωCR_1}$$
- Limits tests $$@ω=0: A(jω)=0,@ω=\infty: A(jω)=\frac{-R_2}{R_1}$$
- Cutoff $$ω_c=\frac{1}{CR_1}, f_c=\frac{1}{2\pi CR_1}$$
Band pass filter
$$A(jω)=\frac{-Z_2}{Z_1}=\frac{jωCR_2}{(1+jωCR_1)(1+jωCR_2)}$$
- Limits tests & cutoff harder to determine (2nd order filter)